I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

Mr. B.K. DWIVEDI

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
01	Aircraft Performance	Hari Krishna G. (564) AKash Dhiman (615)	International Standard Atmosphere * Troposphere * Stratosphere * Mesosphere * Thermosphere * Exosphere	06-08-2016 27-08-2016
02	Aircraft Performance	Rahue Babu (568) Mansi umush Jain (619)	* Geopotential Altitude * Geometric Altitude * Pressure Altitude * Temperature Altitude * Density Altitude	06-08-2016 27-00-2016
03	Aircraft Performance	Mohit Sharma (571) Rajiv Kumar (625)	* Indicator air speed * Computed air speed * Calibrated air speed * Equivalent air speed * True air speed	06-08-2016 27-08-2016

	_				_
\mathbf{L}		anh	Cor	nester	_
\Box		I — (.I I	2001	HESIEI .	- /

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
04	Aircraft Performance	Amey Kulkgoni (572) Puran Amit (627)	Primary Flight Instrument * Altimeter * Airspeed indicator * Vertical speed indicator * Turn-bank indicator * Gyroscope	06-08-2016 27-08-2016
05	Aircraft Performance	Manvendra Singh Bisht (573) AKhil Shahma (629)	* Profile drag * Wave drag * Induced drag * Drag at zero lift condition * Drag polar	06-08-2016 27-08-2016
06	Aircraft Performance	Vinay Kumas Singh (578) Semeer Khan Nog. (632)	Pressure distribution over airfoil * At -4° angle of attack * At 0° angle of attack * At 4° angle of attack * At 12° angle of attack * At 20° angle of attack	13-08-2016

D -	_ 1	_		_
\mathbf{R}	loch	Same	ester -	/
D.	COLL	OCHI	-3101 -	

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
07	Aircraft Performance	Vaghela Kalpesh (579) Adil Khan (635)	Obtain Aerodynamic coefficient from pressure distribution * Obtain C ₁ * Obtain of C _D * Obtain of C _M * Compressibility correction for lift coefficient * Critical pressure coefficient	13-08-2016
08	Aircraft Performance	Mayonk Kothiyal (580) Aman Sharma (637)	Factor affecting Aerodynamic characteristics * Wing span * Aspect ratio * Planform * Sweep * Taper * Twist	13-08-2016
09	Aircraft Performance	Shivam Deshmukh (586) Abhishek Goyal (638)	 Equation of motion of Aircraft * Lite force direction * Drag force direction * Weight force direction * Thrust force direction * Flight path direction 	13-08-2016

-	_ 1	•	
\mathbf{R}	ach	Semest	$\Delta r = l$
D.	ICUII.	OCHICSU	CI - 1

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
10	Aircraft Performance	Sonawane Adesh (587) Hement Chewla (651)	* Power required for unacclerated flight * Power required for accelerated flight * Power required curve for propeller driver aircraft * Power required curve for Jet engine driven Aircraft * Altitude effects on power required	23-08-2016 10-09-2016
11	Aircraft Performance	Waghe Akshay (508) Rehul Revort (654)	* Thrust required curve for driven propeller driven * Thrust required curve for Jet engine driven Aircraft * Thrust required curve for angle of attack variation * Minimum thrust required condition * Trust available curve	20-08-2016
12	Aircraft Performance	Anuj Sachhidanand (592) Punit Kumen Sharma (658)	* Rate of climb * Maximum rate of climb * Excess power for propeller driven Aircraft * Excess power for Jet engine driven aircraft * Steady climb	20-08-16

-				-	_
\mathbf{p}	Too	h. Se	mac	tor	7
- 10	. 150	1. 00	11169	101 -	

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
13	Aircraft Performance	Akash Arya (594) Monika Kumari (659)	* Range for propeller driver aircraft * Endurance for propeller driven aircraft * Range for Jet engine driven aircraft * Endurance Jet engine driven aircraft * Absolute for service ceiling	20-08-16 17-09-16
14	Aircraft Performance	Tanya Neeraj (598) Gauran Sharma (660)	Take off and landing * Lift off distance * Short take off and landing condition * Ground effect * Landing ground roll * Factor affecting lift off distance	20-08-16
15	Aircraft Performance	Omker Arvind (599) Rohit Kumar Buman (665)	Turning flight and V-n Diagram * Load factor * Turning radius * Turning angle * Wing loading * V-N Diagram	20-08-16

i-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

Ankit B.Tech. Semester -7 **Date of Seminar** Seminar Topic

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
01	Finite Elements Methods	Rahul Prasad (567) Rishi Dogra	An introduction to use of finite elements procedure * Physical problem, mathematical models and finite elements solution * Effectiveness of a mathematical model * Reliability of a mathematical model	06-08-16
02	Finite Elements Methods	Diwaker Diwaker (569) Rohit Shabdanand (644)	Finite Elements Analysis as Integral past of Computer aided design * Geometry generation * Finite elements analysis * Kinematic analysis * Automatic drafting	06-08-16 24-9-2016
03	Finite Elements Methods	Ujjwal Thakur (570) siddharth Singh P. (645)	scalar	06-08-16
04	Finite Elements Methods	Gawar Prakash Sain (576) Sumeet M. Bhati (647)	Stiffness metric and boundary conditions * Elements stiffness matrix * Global stiffness matrix * Boundary conditions	24-9-16

04, RII	CO Industrial A	B.Tech. Semester -7		
S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
05	Finite Elements Methods	Rakshit Kush (577) vibhu Dadheech (648)	Raleigh Ritz method * Energy principle * Potential energy function * Virtual work principle	06-08-16 24-9-16
06	Finite Elements Methods	Rishabh Vashisht (589) shubham sharma (649)	Shape function * Approximation of continues models * Discretisation and interpolation * Linear, quadratic shape functions	13-08-16
07	Finite Elements Methods	Mohd. Alshif (530) Ashish sharma (655)	Isoparametric formulations	13/02/16
08	Finite Elements Methods	Shaikh Nigarbanu Hahunbhai (593) Fikanshi Crupta (656)	* General formulation * Sub domain method * Collocation method * Least squares method	13/03/16

			_
	loch	. Semeste	r /
D.	IECH.	OCHESIC	: - /

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
09	Finite Elements Methods	Braj Bhwshan (596) Prerna sharma (657)	# Weak formulation * Dimension reduction * Orthogonality * Quasi-best approximation	13/08/16 15-10-16
10	Finite Elements Methods	Paritosh Prasad (597) Gopal Singl (661)	Glass quadrature formulas * One dimensional Numerical Integration	13/08/16
11	Finite Elements Methods	Novem Kumah Puri (602) Dinesh Gurgar (662)	Lagrange's Interpolation formula * One and two independent variable * Higher order elements	20/08/16 22-10-16
12	Finite Elements Methods	Santosh Rawat (604) Rupesh (677)	* The model problem and definition of convergence * Monotonic convergence * Basic of convergence, the effect of elements distortions * Order of convergence, the effect of elements distortions	20/08/16 22-10-16

D -	- I	0		
	ach	Sam	nester	_ /
D.	ICUI.	OCII	ICSICI	-,

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
	Finite Elements Methods	Rishabh Paliwal (608) vinay K. (678)	Applications and advantages of FEM	20/08/16 22-10-16
14	Finite Elements Methods	Rahul Kumar (612) Vipin C. (680)	Calculation of natural frequencies and nodes using FEM	20/08/16
15	Finite Elements Methods	Sapra Singh (614) Ankit Manek (629)	P and h methods of math refinement	20/08/16
				F

1-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

mr. s. mohapatra

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
01	Aircraft Stability and Control	Abhisher yadar (605) Kundon Kumah	Longitudinal static stability for wing and tail combination * Force acting on combination * Moments acting on combination * Moments equation * Stability condition	27-08-16 24-09-16
02	Aircraft Stability and Control	Heman Sigha. (606) Mayark Khatri (667)	Factors affecting the tail contribution in longitnol static stability * $\frac{d\xi}{d\alpha}$ factor * Dynamic pressure on tail plane * Tail volume coefficient.	27-08-16 24/09/16
03	Aircraft Stability and Control	Arvind Bamne (607) Kushagha Kant (669)	* What is neutral point? * cause of movement of C.G * Effect of after movement of c.g. * Static margin in stick fixed /stick free condition * Comparison	27-08-16
04	Aircraft Stability and Control	Mungara Mikunj (609) Sharkndra Awasthi (671)	* What is stick free condition * What is elevator hinge moment coefficient * What is winge moment constants	24/09/16

			_
R	ach	Semester-	_ /
D.	ICUII.	ocilicatel.	- 1

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
05	Aircraft Stability and Control	Krishan Kumar Gour (610) (aurov Sudhanshu (679) Prantik Jha	Phugoid * What is phugoid * Cause of phugoid * Recovery from phugoid	27-08-16
06	Aircraft Stability and Control	Prantik Tha (679) Prantik Tha (618) Priyatam Bhanu (683)	Damping effects in Lateral motion due to disturbance Disturbance in Lateral Effect in roll Damping in roll Cause of damping in roll	10-09-16
07	Aircraft Stability and Control	fuedech (621) Nitish Chandhary	* Control involving in restoring the aircraft	10-09-16
08	Aircraft Stability and Control	prashant Sigh (622) Sandup Sharma (686)	Effects of wing in Lateral and directional static stability * Wing dihedral effect * Wing sweep back effect Uses of rudder as a control to- * Control direction on ground * Recovery from a spin	10-09-16
09	Aircraft Stability and Control	y anagonde Upender Redde (623)	Uses of rudder as a control to- * Control direction on ground * Recovery from a spin	10-09-16

L Loch Som	octor /
B.Tech. Sem	COLCI -/

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
		Pushphaj singh Ranawat (687)	 * To prevent sideslip in a co- ordinate turn * To induce sideslip in stall turn * To overcome asymmetric power effects * To overcome adverse yawing effects due to rolling or to use of aileron. 	15/10/16
10	Aircraft Stability and Control	Rahul herold (626) Mohit Gahlot (695)	* What is cross coupling effects? * Effects of aileron deflection on yawing moment * Reduction of cross coupling effects by using Frise aileron * Effects of rudder deflection on rolling moments.	10-09-16
11	Aircraft Stability and Control	Sashikant Shorma (629) Chitresh Kuman (768)	* Directional divergence - Cause - Effects - Remedy/ recovery * Spiral divergence - Cause - Effects - Recovery * Autorotation - Cause	17-09-16 29/10/16

-		_	-
\mathbf{D}	looh	Semester -	-/
	CUL	oemesiei -	- /

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
			- Effects - Recovery	
12	Aircraft Stability and Control	Premject Shukea (630) Ablik Borst (731)	Autorotation * Cause * Effects * Recovery	17-09-16
13	Aircraft Stability and Control	Soumya Khandel wal (633) Dayama depak Mukund (503)	* What is aerodynamic balancing * Types of aerodynamic balancing features - Set back hinge - Horn balance - Frise aileron - Sealed nose balance	17-09-16
14	Aircraft Stability and Control	Chirag Apora (634)	Aero elastic effects * Cause of aero elastic effects * Wing Torsional divergence * Control reversal * Control surface flutter	17-09-16
15	Aircraft Stability and Control	(Carya Soni	Trim Tab * Purpose of Trim tabs * Types of Trim tabs with principle of operations	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
	Aircraft Stability and Control	Name of Student	- Geared balanced Tab - Spring Tab - Servo Tab Aircraft flight control system * Flight control surfaces * Cockpit controls * Secondary controls * Types - Mechanical - Hydro mechanical - Artificial feel devices - Stick shaker - Fly by wire	Date of Seminar

I-04, RII	CO Industrial A	rea, Neemrana, Dist. Alw	mr. Bik. Dwivedi	B.Tech. Semester -7
S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
01	Aerodynamics-	Ashish Sankhala (697)	Basic Aerodynamics equations * Continuity equation * Momentum equation * Energy equation * State equation * Velocity of sound	22/10/16
02	Aerodynamics-	Praveen yadar (700)	* Subsonic Nozzle * Supersonic Nozzle * Supersonic Nozzle * Throat * Converging passages * Diverging passages	22/10/16
03	Aerodynamics-	Aspita primadershini (701)	* Subsonic diffuser * Supersonic diffuser * Supersonic diffuser * Converging passages * Diverging passages * Throat	22/10/16

D .	_ ,	_		-
\mathbf{H}	IACh	Sam	nester	_/
D .	I C C I I	. OCII	ICSICI	-,

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
04	Aerodynamics-	Mol. Ekhlag Kuraishi (702)	* Parental equation * Pressure relation * Temperature relation * Density relation * Rankine-Huguenot relation	22/10/16
05	Aerodynamics-	Vixendra dhale (704)	Shock generation Pressure relation Temperature relation Density relation Pressure turning angle	22/10/16
06	Aerodynamics-	Chitrish Kumer Abhinish Thakur	* Introduction to Expansion Fans * Odograph (Expansion) * Reflection and interaction of shocks * Convex corner flow * Pressure relation	29/10/2018

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
07	Aerodynamics-	Diwattar Poudel (698)	* Critical Mach number * Drag divergent Mach number * Sweep back wing * Sweep forward wing * Transonic area rule	29-10-16
08	Aerodynamics-	Durgest Handan (701)	Characteristic of swept wing * Effect of Thickness * Effect of camber * Effect of aspect ratio * Tip effect * Drag estimation of wing	29~10~16
09	Aerodynamics-		* Lift in supersonic flow * Drag in supersonic flow * Pitching moment in supersonic flow * Centre of pressure in supersonic flow * Critical much number	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
10	Aerodynamics-		* Basic elements of method of characteristics * Characteristics lines * Ordinary differential equation * Internal point * Wall point	
11	Aerodynamics-	-	Linearized velocity potential equation * Perturbation velocity * Linear partial differential equation * Small parturition * Linearized pressure coefficient * Linearized theory for small perturbation	
12	Aerodynamics-	~	Parental glauert compressibility correction * Correction for Cp * Correction for Cl * Correction for Cm * Improved compressibility correction	

B.	Геch.	Sen	nester -	7

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
13	Aerodynamics-		* Continuous type * Intermittent type * Advantages * Disadvantages * Losses in supersonic Tunnel	
14	Aerodynamics-		* Hypersonic Tunnel design details * Hypersonic Nozzle * Test section * Mach number determination * Calibration of hypersonic Tunnel	
15	Aerodynamics-		* Hot shot Tunnels * Plasma Jets * Shock tubes * Shock Tunnels * Light gas Tunnels	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
01	Helicopter Theory		* Explain the various Aerodynamics of a Helicopter * How they are different from fixed wing Helicopter * What are the Aerodynamic forces acting on it How they can altered	
02	Helicopter Theory		* Explain the following effects related to rotary wing Aircraft (Figure, block diagram, graph etc.) * Gyroscopic effect * Coriolis effect * Vortex Ring State * Ground effect	
03	Helicopter Theory		Mean of Dissymmetry of lift Mean of Dissymmetry of lift Its effects on flying path & condition How they can be controlled Various components used to control it	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
04	Helicopter Theory		Various Phenomenons * Explain the following in detail * Vortex ring state * Power settling * Over pitching * Auto rotation	
05	Helicopter Theory		Flight control system (Part-) * Explain the following control systems * Cyclic control * Yaw control * Swash plate * Uses of the above	
06	Helicopter Theory		Flight control system (part-2) * Explain the following control system - Collective control - Cyclic control - Anti torque control * Uses of the above	
07	Helicopter Theory		Main Rotor (MR) * Explain the design and operation features of MR * MR construction and attachment	·

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
			* Materials that can be used * Blade angle and other features of main rotor * Power supply	
08	Helicopter Theory		Tail rotor (TR) * Design and operation features of TR * Its construction and attachment * Power supply * Uses of a tail rotor	
09	Helicopter Theory		Vibration related to rotor wing Aircraft * Explain the various types of vibration * Vibration related to rotary wing A/C * Vibration Analysis * Vibration reduction methods	
10	Helicopter Theory		* Airworthiness required for structural strength * Fail safe, safe life * Damage tolerance concepts * Stress, strain, bending, compression	
11	Helicopter Theory		Lightning protection * Why do we need to protect from lightning * Various methods of lightning protection	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
			Components who needs extra protection from lightning How to provide extra protection to these components	
12	Helicopter Theory	-	Construction & material selection * Explain the criteria of material selection for following parts * Fuselage * Blades * Floors,, longerons, stringers, etc.	
13	Helicopter Theory		* What do you mean by Transmission system * Explain the transmission system of Rotary wing A/C * Various components of Transmission system * Explain components of Transmission system * Gear box * Clutches * Free wheel, rotor brake etc.	
14	Helicopter Theory		Explain the design criteria of MR, TR, Transmission system, power system alone with their component	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
15	Helicopter Theory		* Explain the working operation in following condition - High altitude, law air pressure - High air pressure, high moisture Blade tracking & rotor alignment * What do you mean by blade track, rotor alignment & ground resonance * Need of rotor alignment * Difference b/w main & air rotor tracking	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
01	Maintenance of Airframe and Design		Pressurization System * Details of premium system and its requirements.	
02	Maintenance of Airframe and Design		Inspection gauges * Various types of inspection gauges its need and places of its uses.	
03	Maintenance of Airframe and Design		Major Inspections * Major damages, damage to license, and equations for major inspections.	
04	Maintenance of Airframe and Design		Peciodic Inspections * What is peciodic Inspection * Requirements of peciodic Inspections as per CAR	

-		_	2	-
D	looh	CON	neste	r /
\mathbf{D}	I C. C.III	CHI	Heste	-/

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
05	Maintenance of Airframe and Design		* What is abnormal landing * Inspections to be claimed out after abnormal landing * Relevant rules as per CAR.	
06	Maintenance of Airframe and Design		Aircraft Airframe * Types of Airframe. * Station numbering * Locality of components as per station numbering.	
07	Maintenance of Airframe and Design		Airplane control system * Aurorean, Relators, Rudders. * Trimming and control tabs * Leading and trailing edge flaps.	
08	Maintenance of Airframe and Design		Aircraft basic structure * Structural components * Glean fibers * Veiny * Percepts * Finishing material	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
09	Maintenance of Airframe and Design		Various types of oxygen system Details components used Emergency system	
10	Maintenance of Airframe and Design	-	Air-conditioning system * Various types of air-conditioning system * Details of components of A/C system	
11	Maintenance of Airframe and Design		NDT Techniques * Various types of NDT * Macrofossil NDT method	
12	Maintenance of Airframe and Design		NDT Techniques * Ultra sonic method	
13	Maintenance of Airframe and Design		* Types of hydraulic system * Components used there in * Closed centre hydraulic system	-

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
14	Maintenance of Airframe and Design		* Needs of preumatic system * Comparative study of hydraulic preumatic system * System * Components used in preumatic system.	
15	Maintenance of Airframe and Design		* Methods and procedure of balancing * Regulation requirements of balancing of control surface	